Abstract

A novel CO2 tolerant microalga Tetradesmus obliquus CT02, was previously evaluated to be a suitable bio refinery platform for synthesis of bioactive molecules, biodiesel, and biofertilizer. In the present study, a process engineering strategy was developed targeting improved growth performance of the strain at large scale under fluctuating outdoor environmental conditions. The strategy relies on maintaining pH of the culture at its optimal value via cascade control with CO2 feeding. The strategy was developed at laboratory scale bubble column photobioreactor under diurnal variation of simulated sunlight intensity and was further validated through growth performance of the strain under outdoor conditions in a 100L airlift bioreactor. Under laboratory condition, 53.3% and 85.16% improvement in biomass concentration (1.87gL-1) and productivity (114.8mgL-1 day-1) was achieved as compared to the uncontrolled pH, respectively. The strategy demonstrated a significant improvement in biomass concentration and productivity by 225.7% and 121.6% respectively, compared to the pH uncontrolled batch, even under outdoor fluctuating environmental condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call