Abstract

Additive manufacturing (AM) processes are increasingly being used to manufacture complex precision parts for the automotive, aerospace and medical industries. One of the popular AM processes is the selective laser sintering (SLS) process which manufactures parts by sintering metallic, polymeric and ceramic powder under the effect of laser power. The laser energy expenditure of SLS process and its correlation to the geometry of the manufactured part and the SLS process parameters, however, have not received much attention from AM/SLS researchers. This paper presents a mathematical analysis of the laser energy required for manufacturing simple parts using the SLS process. The total energy expended is calculated as a function of the total area of sintering (TAS) using a convex hull based approach and is correlated to the part geometry, slice thickness and the build orientation. The TAS and laser energy are calculated for three sample parts and the results are provided in the paper. Finally, an optimization model is presented which computes the minimal TAS and energy required for manufacturing a part using the SLS process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call