Abstract

Bulk and surface sensitive photoemission core line spectra have been acquired for Si and Ge following each step in the process sequence of Si0.7Ge0.3/2 nm HfO2/2.5 nm TaN/950 °C gate stack film systems. Extended x-ray absorption fine structure measurements have confirmed Ge segregation and pileup to form a Ge-rich layer at the SiGe surface during Si oxidation. Transmission electron micrograph cross-sections with electron energy loss element profiles have verified the effectiveness of plasma nitridation for restricting SiGe oxidation and achieving <1 nm equivalent oxide thickness with gate leakage current density equivalent to that of Si substrates without the necessity of a Si cap for oxidation control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.