Abstract

As one of the key components in the non-volatile full adder (NV-FA), spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction (STT assisted VCMA-MTJ) will possess superior development prospects in internet of things, artificial intelligence and other fields due to its fast switching speed, low power consumption and good stability. However, with the downscaling of magnetic tunnel junction (MTJ) and the improvement of chip integration, the effects of process deviation on the performances of MTJ device as well as NV-FA circuit become more and more important. Based on the magnetization dynamics of STT assisted VCMA-MTJ, a new electrical model of STT assisted VCMA-MTJ, in which the effects of the film growth variation and the etching variation are taken into account, is established to study the effects of the above deviations on the performances of MTJ device and NV-FA circuit. It is shown that the MTJ state fails to be switched under the free layer thickness deviation <i>γ</i><sub>tf</sub> ≥ 6% or the oxide layer thickness deviation <i>γ</i><sub>tox</sub> ≥ 0.7%. The sensing margin (SM) is reduced by 17.5% as the tunnel magnetoresistance ratio deviation <i>β</i> increases to 30%. The writing error rate can be effectively reduced by increasing <i>V</i><sub>b1</sub>, and increasing <i>V</i><sub>b2</sub> when writing ‘0’ or reducing <i>V</i><sub>b2</sub> when writing ‘1’ in the NV-FA circuit. The output error rate can also be effectively reduced by increasing the driving voltage of logical operation <i>V</i><sub>dd</sub>.

Highlights

  • CoFeB MgO CoFeBSchematic structure of the STT assisted VCMA-MTJ device.

  • 相应地,在磁化动力学方面,由于 VCMA-MTJ 仅需考虑 VCMA 效应的影 响,自由层磁化矢量 m 的进动由阻尼力矩和进动力矩二者共同作用,此时自由 层磁化矢量 m 在 xy 平面上方和下方的翻转与 VCMA 效应持续时间(Vb 脉冲信 号宽度)的长短有关;而 STT 辅助 VCMA-MTJ 需要同时考虑 VCMA 效应和 STT 效应的影响,自由层磁化矢量 m 的进动由阻尼力矩、进动力矩和自旋转移力矩 三者共同作用,且 VCMA 效应持续时间(Vb1 脉冲信号宽度)较短,不会引起自 由层磁化矢量 m 在 xy 平面上方和下方的翻转,m 的翻转主要由 STT 效应(Vb2 或 Vb2’)来实现。下面将从磁化动力学角度分析两种电压脉冲(Vb(Vb1, Vb2)和 Vb(Vb1, Vb2’))对 MTJ 状态切换的影响。 2.1 P 态到 AP 态的切换.

  • 偏转并与 xy 平面重合,m’及 Heff’为 t1 时刻 m 及 Heff 的位置,如图 3(c)所示。 当 t1

Read more

Summary

CoFeB MgO CoFeB

Schematic structure of the STT assisted VCMA-MTJ device. 相应地,在磁化动力学方面,由于 VCMA-MTJ 仅需考虑 VCMA 效应的影 响,自由层磁化矢量 m 的进动由阻尼力矩和进动力矩二者共同作用,此时自由 层磁化矢量 m 在 xy 平面上方和下方的翻转与 VCMA 效应持续时间(Vb 脉冲信 号宽度)的长短有关;而 STT 辅助 VCMA-MTJ 需要同时考虑 VCMA 效应和 STT 效应的影响,自由层磁化矢量 m 的进动由阻尼力矩、进动力矩和自旋转移力矩 三者共同作用,且 VCMA 效应持续时间(Vb1 脉冲信号宽度)较短,不会引起自 由层磁化矢量 m 在 xy 平面上方和下方的翻转,m 的翻转主要由 STT 效应(Vb2 或 Vb2’)来实现。下面将从磁化动力学角度分析两种电压脉冲(Vb(Vb1, Vb2)和 Vb(Vb1, Vb2’))对 MTJ 状态切换的影响。 2.1 P 态到 AP 态的切换. 偏转并与 xy 平面重合,m’及 Heff’为 t1 时刻 m 及 Heff 的位置,如图 3(c)所示。 当 t1

Tstt m’
Tstt Td
STT 极化因子 饱和磁化强度 垂直磁各向异性系数 VCMA 系数
Vdd RP
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call