Abstract

India is one of the major rice-producing countries. Rice husk is a major agricultural by-product from rice production, which is used as a fuel in boilers. Its use as fuel produces huge amounts of silica-rich rice husk ash (RHA). This paper aims at providing an overall assessment of environmental impacts associated with the extraction of silica from RHA-a process developed by our study group. The functional unit used in this study is production of 100kg of silica. The analysis included the extraction and transportation of other raw materials; RHA was assumed to be processed at the site. The study was conducted in accordance with the international ISO 14040 procedural framework. LCA is performed using GaBi Education software, and five midpoint indicators are chosen to assess the environmental impacts of silica extraction. The overall climate change (CC) of the extraction process is 7.26kg CO2 equivalent per kg of silica produced. A high contribution of calcination to CC is attributed to the use of electricity. The comprehensive environmental impacts of silica-rich RHA resulting from processing of RHA and improvement options to achieve sustainable production are presented. The negative impacts that can be avoided during silica extraction are also discussed. It is observed that calcination is a major contributor to the overall environmental indicators. The work also stresses on the use of renewable energy for electricity generation, which would help in decreasing the overall greenhouse gas emissions during extraction while ensuring waste utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.