Abstract

The present study focuses on modelling the removal of reactive azo dyes (Reactive Orange 16, Reactive Red 120 and Direct Red 80) by ozonolytic degradation. The process was optimised using One Variable at a Time (OVAT) approach followed by Response Surface Methodology (RSM). The operational parameters influencing the process of degradation, i.e. initial dye concentration (mg/L), pH and ozone exposure time were modelled using Central Composite Design (CCD). Under the optimal condition (Initial dye concentration = 2000 mg/L, pH = 11.0, Ozone exposure time = 10 min), the highest desirable response (i.e. Concentration of the degraded dye) for the degradation of RO 16, RR 120 and DR 80 are 1289.35 mg/L, 1224.98 mg/L and 1039.87 mg/L, respectively. The high correlation coefficients, 0.9814 (RO 16), 0.9815 (RR 120) and 0.9685 (DR 80) indicates the closeness of the results predicted by RSM with the experimental results. The rate of degradation for all the three dyes at the optimal condition followed pseudo-first order kinetics with the rate of reaction as 141 mg/L.min, 197.2 mg/L.min and 216.6 mg/Lmin. The predicted model was also evaluated by partial derivative-based equation modelling and experimental approach. The reliability and applicability of the developed process were confirmed by degrading the synthetic mixed dye effluent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call