Abstract

High-throughput screening (HTS) approaches are commonly used to accelerate downstream process development. Although most HTS approaches use batch isothermal data (KP screen) or bind and elute mode as screening procedure, different or new process designs are rarely investigated. In this paper, a mechanistic model case study for the separation of two different two-component solutions was conducted and confirmed prior evidence. With these outcomes, a novel HTS screening procedure was developed including the determination of competitive adsorption-based displacement effects and key parameter identification. The screening procedure employing an overload bind and elute (OBE) mode is presented in a case study dealing with IgG aggregate removal in a typical monoclonal antibody purification step, applying a Sartobind®S membrane adsorber (MA). Based on a MA scale down device, the OBE mode allows the determination of classical process parameters and dynamic effects, such as displacement effects. Competitive adsorption-based displacement effects are visualized by introducing a displacement identifier leading to a displacement process map. Based on this map, the approach is transferred to and confirmed by the OBE recycle experiments with 4.6 and 8.2ml benchtop scsale devices resulting in 45% reduced IgG monomer and 88% increased higher molecular weight species binding capacities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.