Abstract

Aqueous MEA-based CO2 capture is one of main technologies for CO2 capture. However, there are various different sources of flue gases from different industries which have different flow conditions. In particular the CO2 content is very important and it will have a critical impact on the associated design of CO2 capture processes. In this study a superstructure optimization methodology is applied to ranges of different flue gases found in non-power industries such as cement, steel and refinery plants. Optimization of both operating conditions and structural modifications reveals the optimal configurations of equipment for the different industrial sources of CO2. A case study is given to address how energy consumption and process design of MEA-based CO2 capture systems is influenced by CO2 concentration in the feed gas. It is shown that flue gas splitting is the most significant and useful process modification for all the different flue gases tested in particular for low CO2 content flue gases. At higher CO2 contents the optimal designs are shown to require a combination of process modifications to give an even greater reduction of energy requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.