Abstract

Combined fermentation and thermocatalytic conversion of biomass to isoprene comprises a hybrid process to provide the key monomer in the manufacturing of renewable synthetic rubber. In this work, design and economic evaluation of a chemical process considers the three-step process chemistry: (a) fermentation of glucose to either mesaconic or itaconic acid, (b) catalytic hydrodeoxygenation of mesaconic or itaconic acid to 3-methyl-tetrahydrofuran, and (c) catalytic dehydra-decyclization of 3-methyl-tetrahydrofuran to isoprene. Detailed reaction and separation systems were designed to maximize catalytic yield to isoprene and recover it with high purity. An economic sensitivity analysis identified hydrodeoxygenation and dehydra-decyclization catalytic selectivity as the critical opportunities for improving process economics. The process based on existing catalytic performance achieves a minimum sale price of isoprene (defined as the price which results in a project net present value of zero) of $4.07 kg–1 ($...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call