Abstract
In recent years, the performance and miniaturization of portable information devices have rapidly advanced. The build-up process is often used in the manufacturing of printed wiring boards (PWBs) for high-density circuits. At present, CO2 laser beams are generally used in the build-up process to drill blind via holes (BVHs) that connect copper foils. The Cu direct-laser method is often used in this process, which irradiates laser to drill the copper foil and insulation layer simultaneously. Cu direct-laser involves a complex phenomenon because it drills copper and resin, with different decomposition points, at the same time. However, only few studies have been made in this field. This report focuses on monitoring Cu direct-laser drilling with a high-speed camera. We drilled holes with four different laser power outputs, 25 W, 50 W, 75 W, and 95 W and measured the size of the drilled holes. During the drilling process, the camera captured the emission of scattering materials in the PWBs. We have processed the images obtained from the camera to observe the scattering material. As a result, we found out that changes in the amount of scattering occur on four occasions: when the outer copper foil is drilled through, when the drilled depth reaches the inner copper foil, when the increase rate of the hole diameter is reduced, and when the inner copper foil is drilled through. Based on these results, the suitable laser irradiation time can be determined for different drilling conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.