Abstract

AbstractTungsten carbide–cobalt (WC–Co) is a widely used cermet that is generally fabricated into bulk parts via conventional powder metallurgy (P/M) methods. Because this material (and other cermets) is very hard and wear resistant, diamond grinding is generally required to fabricate complex parts. As an alternative, studies have shown the Laser Engineering Net Shaping (LENS) process to be a technically feasible method, allowing for fabrication of near‐net‐shape parts. The economic trade‐offs, however, have not been previously characterized. In this work, technical cost modeling (TCM) is applied to compare the costs of fabricating WC–Co parts with the P/M process to those of the LENS process. Cost drivers are identified and sensitivity analysis is conducted. Results reveal that the uncertainty in functional unit has a significant effect on relative process costs, and the cost is sensitive to order size only if less than ten parts are produced. It is concluded that the LENS process is economically preferable if part size is small or part shape is complex. The P/M process is more suitable to produce large parts in simple shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.