Abstract

By devising a novel near-infrared (NIR) in-situ online monitoring system, this study proposed a new process control method for rice protein (RP) enzymatic hydrolysis in order to address the challenge of monitoring certain chemical indices in real-time. The endpoint of the enzymatic hydrolysis reaction and the flexible switching point of dual-enzyme hydrolysis were determined through real-time spectrum collection. Correction and prediction models were constructed to predict the angiotensin I-converting enzyme (ACE) inhibitory activity of RP hydrolysis as well as the endpoint and the dual-enzyme flexible switching point at different substrate concentrations in an attempt to establish the new control system. At the RP substrate concentrations of 35, 40, and 45 g/L, the R2 of predicted and measured ACE inhibitory activity values under hydrolysis with a single alcalase were 0.8852, 0.8360, and 0.8613, respectively. In addition, the ACE inhibitory activity of dual-enzyme hydrolysis showed a high growth trend before and after the flexible switching point, and the hydrolysis time was significantly shortened at the same endpoint threshold as that of single alcalase hydrolysis. The results indicated that this method is capable of accurately determining and regulating the endpoint and adaptable transition point of RP hydrolysis. Consequently, this approach holds promise for the regulation of food basic materials during large-scale processing operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.