Abstract
The paper presents a dropwise additive manufacturing process for pharmaceutical products (DAMPP) as an alternative to conventional methods. This mini manufacturing process for the production of personalized pharmaceutical products utilizes drop-on-demand (DoD) printing technology for the deposition of active pharmaceutical ingredient (API) onto edible substrates. Here we present a process control framework for DAMPP, including on-line monitoring, automation and closed loop control, in order to produce individual dosage forms with the desired critical quality attributes, including formulation composition, drop size, deposit morphology and dissolution performance. In order to achieve desired product morphology, a surrogate model based on polynomial chaos expansion is developed to relate the critical process parameters to deposit morphology using dissolution data of the active pharmaceutical ingredient. The proposed process control strategy can effectively mitigate variations in the dissolution profiles due to variable dosage amounts and enable the application of the DoD system for the production of individualized dosage regimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.