Abstract

A comparison of various process configurations was made for the production of 2-methoxy-2,4,4-trimethylpentane, which is a promising gasoline component owing low solubility to water and high octane value. The ether is synthesised by reacting methanol with a mixture of 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene, which are obtained in large scale from the dimerisation of isobutene. The reaction equilibria were determined experimentally at temperature range 323–383 K in liquid phase using a commercial cation exchange resin Amberlyst 35 as catalyst. A first order kinetic model was developed and utilised in the process simulations. The production of the ether was found to be inefficient in a once through tubular reactor, because the conversion is strongly limited by the reaction equilibrium. Considerably higher conversion and more economical process are obtained by using reactive distillation in the process schema.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.