Abstract

Vibrostrengthening is a fatigue-enhancement process, originally developed by the Russian aviation industry (Rumyantsev et al. 2004). A potential alternative to shot peening, currently a standard industrial surface treatment for fatigue enhancement, vibrostrengthening offers the potential for shorter processing times and uniform treatment of the surface, especially when dealing with fragile parts and complex part geometries. Vibrostrengthening is a modification of a vibratory finishing process in which the parts or workpieces and a medium of hard granular particles are vibrated together in a processing tub causing the particles to mechanically work the surface of the workpiece. In vibrostrengthening, the workpiece is fixed inside a vibratory tub, increasing the relative velocities between the particles in the medium and the workpiece. This gives rise to more aggressive mechanical working of the workpiece surface. The resulting plastic deformation at the surface produces a sub-surface compressive residual stress, which together with a better surface finish, is conjectured to improve the fatigue strength of workpiece. This paper is an experimental study of vibrostrengthening of aluminum components for fatigue life enhancement. The effects of various process parameters on the fatigue strength of a specimen are studied to experimentally characterize the process. These experiments also demonstrate that the vibrostrengthening process produces significant fatigue enhancement on experimental samples produced by machining. Further, these experiments verify that, in fact, fatigue enhancement in the vibrostrengthening process is a result of the combined effect of inducing a compressive residual stress field within the material and improving the material’s surface finish. Fatigue tests indicate that the fatigue enhancement of this process is comparable to, if not better than, shot peening. One important reason for such a favorable comparison, given the lower levels of residual stress that result from this process, is the superior surface finish it produces. A companion paper (Sangid et al. 2010) presents a study involving process visualization to understand and explain the process mechanics; further, a computational model is produced to characterize the fatigue enhancement of the process through the compressive residual stress field and surface topography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call