Abstract

The sintering temperature plays a major role in determining the microstructural as well as mechanical properties of composite materials. Apart from temperature, there are many factors, such as reinforcement particle geometry and morphology, which directly affect the sintering behavior of the composites. This study emphasizes the role of reinforcement particle geometry in the differential sintering response of copper-alumina composite. The copper and alumina powders were blended, compacted and then sintered conventionally at various temperatures such as 900, 950 and 1000°C. The formation of an interfacial phase has been characterized by X-ray diffraction and scanning electron microscopy. The variations in hardness values were recorded with the variation of sintering temperature, and these have been correlated with the formation of the intermediate compound. The formation of an intermediate phase at 950°C, and the variation in the properties of the composite sketches the profile of interfacial kinetics of the copper-alumina interface when alumina is present as particulate. The decrease in hardness at 950°C indicates the formative stage of CuAlO2, and then an increase in hardness at 1000°C indicates the strengthening effect of the interfacial compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.