Abstract

Use of boron and arsenic diffusions through an emitter polysilicon film (borosenic-poly emitter-base process) produces a transistor base width of less than 100nm with an emitter junction depth of 50 nm and an emitter-to-base reverse leakage current of approximately 70 pA. The borosenic-poly process resolves both the channeling and shadowing effects of a sidewall-oxided spacer during the base boron implantation. The process also minimizes crystal defects generated during the emitter and base implantations. The coupling-base boron implant significantly improves a wide variation in the emitter-to-collector periphery punchthrough voltage without degrading the emitter-to-base breakdown voltage current gain, cutoff frequency, or ECL gate delay time. A deep trench isolation with 4- mu m depth and 1.2- mu m width reduces the collector-to-substrate capacitance to 9 fF, while maintaining a transistor-to-transistor isolation voltage of greater than 25 V. The application of self-aligned titanium silicide technology to form polysilicon resistors without holes and to reduce the sheet resistance of the emitter and collector polysilicon electrodes to 1 Omega /square is discussed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.