Abstract

During the process of lapping, the mechanisms of surface formation and removal rate are decisively influenced by the movement type of the individual grains within the lapping abrasive. Two active movement types can be differentiated. These are the rolling and sliding of the individual lapping grains within the working gap in relation to one of the working partners as well as the passiveness of the grains, whereby varying surface topographies of the workpiece are created by active movement types. These can among others be influenced by some of the adjustable process parameters. However, the most important parameter is the significant grain form. On this basis, a simulation model for the analysis of the surface formation by the motion of grains is described in this paper, also considering collisions and break-ups of grains. It enables the quantitative specification of the individual movement types of the lapping grains under the influence of different process parameters. These are for example the lapping pressure, lapping speed, grain size, grain concentration etc as well as the qualitative estimation of these influences on the processing result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.