Abstract
In this survey we describe an interplay between Procesi bundles on symplectic resolutions of quotient singularities and Symplectic reflection algebras. Procesi bundles were constructed by Haiman and, in a greater generality, by Bezrukavnikov and Kaledin. Symplectic reflection algebras are deformations of skew-group algebras defined in complete generality by Etingof and Ginzburg. We construct and classify Procesi bundles, prove an isomorphism between spherical Symplectic reflection algebras, give a proof of wreath Macdonald positivity and of localization theorems for cyclotomic Rational Cherednik algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.