Abstract
With more than 9000 papers published annually, X-ray photoelectron spectroscopy (XPS) is an indispensable technique in modern surface and materials science for the determination of chemical bonding. The accuracy of chemical-state determination relies, however, on a trustworthy calibration of the binding energy (BE) scale, which is a nontrivial task due to the lack of an internal BE reference. One approach, proposed in the early days of XPS, employs the C 1s spectra of an adventitious carbon layer, which is present on all surfaces exposed to air. Despite accumulating criticism, pointing to the unknown origin and composition of the adventitious carbon, this is by far the most commonly used method today for all types of samples, not necessarily electrically insulating. Alarmingly, as revealed by our survey of recent XPS literature, the calibration procedure based on the C 1s peak of adventitious carbon is highly arbitrary, which results in incorrect spectral interpretation, contradictory results, and generates a large spread in reported BE values for elements even present in the same chemical state. The purpose of this review is to critically evaluate the status quo of XPS with a historical perspective, provide the technique’s operating principles, resolve myths associated with C 1s referencing, and offer a comprehensive account of recent findings. Owing to the huge volume of XPS literature produced each year, the consequences of improper referencing are dramatic. Our intention is to promote awareness within a growing XPS community as to the problems reported over the last six decades and present a guide with best practice for using the C 1s BE referencing method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.