Abstract

First posted July 5, 2018 For additional information, contact: Director,California Water Science CenterU.S. Geological Survey6000 J Street, Placer HallSacramento, California 95819 Advances in spectroscopic techniques have led to an increase in the use of optical measurements (absorbance and fluorescence) to assess dissolved organic matter composition and infer sources and processing. Although optical measurements are easy to make, they can be affected by many variables rendering them less comparable, including by inconsistencies in sample collection (for example, filter pore size, preservation), the application of corrections for interferences (for example, inner-filtering corrections), differences in holding times, and instrument drift (for example, lamp intensity). A documented, standardized procedure to address these variables ensures that the optical (absorbance and fluorescence) measurements collected by U.S. Geological Survey researchers are useful and widely comparable.Rigorous and quantifiable quality assurance and quality control are essential for making these data comparable, particularly because there is no published guideline for the measurement of dissolved organic matter absorbance and fluorescence, and especially because there is no National Institute of Standards and Technology standard for dissolved organic matter. Validation and quality-control samples are analyzed on a monthly basis to determine laboratory and instrument precision and daily (that is, each day samples are run) to ensure repeatability. Data are not considered acceptable unless they meet laboratory criteria: All standards should be within 10 percent of the target value, laboratory replicates should be within 5 percent relative percent difference, and laboratory blanks (that is, laboratory reagent-grade water) should be less than one-tenth of the long-term method detection limit.Finally, for data to be useful, they must be accessible to users in a format that can be easily analyzed and interpreted. The Organic Matter Research Laboratory staff has developed a processing routine that extracts a subset of the data, which is made available to the public through the USGS National Water Quality Information System (http://nwis.waterdata.usgs.gov/usa/nwis/qwdata), and organizes the full datasets (that is, complete absorbance spectra and fluorescence excitation-emission matrices) in different forms that allow for these data to be analyzed using multi-parameter and multi-way statistical approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.