Abstract

Analytical and numerical procedures for the calculation of atomic transition matrix elements in the interaction with linearly and circularly polarized laser light are presented. The laser—atom interaction is treated beyond the dipole approximation. The procedures are derived explicitly for hydrogen but may be readily generalized to other one-electron systems with, e.g., quantum defect type radial wavefunctions. The numerical procedure is programmed in Matlab and tested for main quantum numbers up to n = 30. The results clearly indicate when the dipole approximation breaks down in connection with laser excitation of angular Rydberg wavepackets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.