Abstract

It is known that the occurrence of outliers in linear or non-linear time series models may have adverse effects on the modelling and statistical inference of the data. Consequently, extensive research has been conducted on developing outlier detection procedures so that outliers may be properly managed. However, no work has been done on the problem of outliers in circular time series data. This problem is the focus of this paper. The main objective is to develop novel numerical and graphical procedures for detecting these outliers in circular time series data.A number of circular time series models have been proposed including the circular autoregressive model. We extend the iterative outlier detection procedure which has been successfully used in linear time series models to the circular autoregressive model. The proposed procedure shows a good performance when investigated via simulation for the circular autoregressive model of order one. At the same time, several statistical techniques have been used to detect the change of preferred trend in time series data using SLIME and CUSUM plots. While the methods fail to indicate directly the outliers in circular time series data, we use the ideas employed to develop three novel graphical procedures for identifying the outliers. For illustration, we apply the procedures to a particular set of wind direction data. An agreement between the results of the graphical and iterative detection procedures is observed. These procedures could be very useful in improving the modelling and inferential processes for circular time series data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.