Abstract

The performance of light timber frame wall and floor assemblies in fire depends on their composition. The assemblies' ability to form fire-separations between building compartments (separating function) can be assessed by full-scale fire testing or calculation methods. Calculations are the low cost and more flexible alternative.The component additive method is a commonly used calculation method for fire design of timber structures. The method considers the insulation ability of the material layers present in the assembly. The component additive method described in this article is developed to be flexible to implement different materials and products of different dimensions. However, the amount of different materials currently included in this method is rather limited and there is no generally accepted procedure to implement new materials.This paper presents a common agreement of the procedure to implement new materials which comprises of: (1) the design and execution of model-scale fire tests; (2) determination of the modified thermal properties needed for simulations; (3) thermal simulations of assemblies in fire conditions; (4) development of design equations and; (5) verification by one or more full-scale fire test(s). The abovementioned steps have been clearly presented in this paper and supported by examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.