Abstract
Two semantic paradoxes, the Liar and Curry’s paradox, are analysed using a newly developed conception of procedural semantics (semantics according to which the truth of propositions is determined algorithmically), whose main characteristic is its departure from methodological realism. Rather than determining pre-existing facts, procedures are constitutive of them. Of this semantics, two versions are considered: closed (where the halting of procedures is presumed) and open (without this presumption). To this end, a procedural approach to deductive reasoning is developed, based on the idea of simulation. As is shown, closed semantics supports classical logic, but cannot in any straightforward way accommodate the concept of truth. In open semantics, where paradoxical propositions naturally ‘belong’, they cease to be paradoxical; yet, it is concluded that the natural choice—for logicians and common people alike—is to stick to closed semantics, pragmatically circumventing problematic utterances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.