Abstract

Although there is much enthusiasm for using virtual reality (VR) in training and education, research findings on the benefits of VR over traditional learning environments are mixed. This disconnect in the literature may be because the cognitive mechanisms that underlie learning in VR have not been addressed systematically. This research explored immersion and interactivity, two key features of VR that set it apart from traditional training approaches. In addition, the impact of spatial ability (SA) on learning outcomes was also assessed. In this experiment, 83 college students learned a maintenance procedure in a virtual environment (VE). Students were assigned randomly to one of three between-subjects training groups. In the Desktop group, students used a desktop-based environment and interacted with it using a mouse and keyboard. In the VR-voice group, students used a VR-based environment and interacted using voice-based commands, while those in the VR-Gesture group interacted using gesture-based commands. To measure learning, students completed a written recall test. There were no significant differences in learning outcome across the three groups, but SA was a significant moderator. Overall, those with high SA outperformed those with low SA in the Desktop condition; however, this effect was not significant in the VR conditions. In fact, those with low SA performed best in the VR-gesture condition compared to the VR-voice or Desktop training. These results suggest that VR environments that incorporate gesture-based interactions may help individuals with low SA better understand the content of the lesson.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call