Abstract

In this paper, we present the Procedural Game Adaptation (PGA) framework, a designer-controlled way to change a game's dynamics during end-user play. We formalize a video game as a Markov Decision Process, and frame the problem as maximizing the reward of a given player by modifying the game's transition function. By learning a model of each player to estimate her rewards, PGA managers can change the game's dynamics in a player-informed way. Following a formal definition of the components of the framework, we illustrate its versatility by using it to represent two existing adaptive systems: PaSSAGE, and Left 4 Dead's AI Director.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.