Abstract

IntroductionThe implications of novel drug-eluting stent (DES) design modifications including ultra-thin struts and new concepts of polymer coating for procedural efficacy are still unknown.AimTo evaluate procedural efficacy and short-term safety of a novel DES design.Material and methodsIn this all-comers registry, 407 consecutive patients were enrolled upon undergoing percutaneous coronary interventions (PCI) with the thin-strut bioabsorbable abluminal polymer-coated SYNERGY stent. These patients were then compared with the previous 407 patients undergoing PCI performed by the same interventionalists using currently established second-generation DES (Promus Element plus, Xience prime, Resolute Integrity). Several clinical and procedural data were compared, and the coronary artery complexity was assessed by the American College of Cardiology/American Heart Association classification and SYNTAX Score.ResultsThe study population consisted of 814 patients. A total of 859 Synergy stents were deployed in 480 target vessels in the Synergy group (n = 407), and 904 stents in 469 vessels in the second-generation DES group (n = 407). Coincidentally, target lesions in the Synergy group (A 2.7%, B1 13.8%, B2 38.6%, C 45.0%) were more complex (p < 0.01) than those in the second-generation DES group (A 4.9%, B1 18.7%, B2 42.3%, C 34.2%). In cases with severe lesions (B2/C), the median contrast agent amount and fluoroscopy time were significantly lower in the Synergy group, indicating improved deliverability (110 ml vs. 150 ml; p < 0.01 and 7.2 min vs. 9.1 min; p = 0.01). Rates of in-hospital major adverse cardiovascular events were comparable between the two groups.ConclusionsIn an all-comers, real-world PCI population, novel stent design modifications including ultra-thin struts and abluminal bioabsorbable polymer coating are associated with improved procedural performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.