Abstract

The concept of a procambium-cambium continuum was examined in Populus deltoides by following its development in serially sectioned bud and stem tissues. As in other species, the term cambium is used to refer to that part of the continuum associated with the formation of secondary vascular tissues; i.e., with secondary growth. However, that part of the continuum associated with the formation of primary vascular tissues is subdivided to facilitate interpretation of the consecutive stages of primary xylem differentiation. Thus, the procambium as envisioned by other authors is subdivided into procambium, initiating layer, and metacambium, all of which develop acropetally and in complete continuity. The procambium is derived from the residual meristem in the form of acropetally developing strands and traces. The initiating layer is represented by the first, tangentially separated, periclinal divisions that delineate the position of the prospective cambium. The metacambium is a later stage during which additional periclinally dividing cells unite the initiating layer into a tangentially continuous meristem within a trace bundle. After establishment of the initiating layer, the procambial trace is completely phloem dominated. Protoxylem differentiation begins in an originating center at the base of the leaf primordium and it progresses basipetally to form the protoxylem pole. Cells of the initiating layer do not contribute to the formation of either protoxylem or protophloem. However, those cells of the initiating layer directly opposite the protoxylem pole divide precociously and later differentiate to metaxylem, thus forming a radial file of protoxylem-metaxylem elements. Protoxylem elements of lateral traces are longitudinally continuous with the protoxylem of their parent traces, whereas those of a central trace are longitudinally continuous with the metaxylem of its parent trace. Metaxylem is formed later than protoxylem and it is derived from the metacambium. Metaxylem does not form a continuous system with protoxylem of the same trace because of the different temporal and spatial origins of the two kinds of xylem. Rather, metaxylem is longitudinally continuous with secondary xylem of older traces below. An attempt was made to determine the functional significance of the pattern of protoxylem and metaxylem differentiation in relation to primary and secondary plant development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call