Abstract

The effects of the Ca(2+)-induced Ca2+ release blocker procaine on individual sarcoplasmic reticulum Ca2+ release channels have been examined in planar lipid bilayers. Procaine did not reduce the single channel conductance nor appreciably shorten the mean open times of the channel; rather, it increased the longest closed time. These results indicated that procaine interacted selectively with a closed state of the channel rather than with an open state. Gating of the sarcoplasmic reticulum Ca2+ release channel was described by a modified scheme of Ashley and Williams (1990. J. Gen. Physiol. 95:981-1005), including an additional long-lived closed state. Computer simulations determined that procaine was more likely to interact with this long-lived Ca(2+)-bound closed state of the channel rather than with other states of the channel. Simulations with the same model were also able to reproduce a prominent Ca(2+)-sensitive transition between "random" and "bursting" forms of gating of the channel, variations of which may account for "gearshift" behavior reported in studies with this and other single channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.