Abstract

Entomopathogenic fungi are known to control vector mosquito populations. Thus, understanding the infection dynamics of entomopathogenic fungi is crucial for the effective control of insect pests such as mosquitoes. We investigated the dynamics of Beauveria bassiana s.l. 60-2 infection of Anopheles stephensi by exposing the mosquito to fungus-impregnated filter paper through two infection routes and then comparing the mortality and extent of infection. Fungal development was observed after using this inoculation method with both the tarsus route and the proboscis route, but early mosquito death occurred only after infection through the proboscis route. Fungal hyphae invaded almost all the tissues and organs before or after the death of the host, and fungal invasion of the brain was highly correlated with mortality. Moreover, although all mosquitoes that were alive at various time points after inoculation showed no fungal infection in the brain, fungal infection was detected in the brain in all dead mosquitoes. Our results suggest that fungal invasion of the brain represents one of the factors affecting mortality, and that the proboscis route of infection is critical for the early death of vector mosquitoes.

Highlights

  • Half of the world population is at risk of contracting malaria, and an estimated 438,000 people, mostly African children, died of the disease in 2014

  • B. bassiana s.l. 60-2, which originated in Japan, showed the highest virulence against Anopheles stephensi (median survival time (MST): 5.8 days) when the mosquitoes were exposed to fungus-impregnated filter paper[4,5,6], and this fungus could potentially be used as a fungal bio-pesticide for controlling vector mosquitoes[7]

  • When mosquitoes are exposed to fungus-impregnated filter paper, fungal conidia attach to legs and proboscis

Read more

Summary

Introduction

Half of the world population is at risk of contracting malaria, and an estimated 438,000 people, mostly African children, died of the disease in 2014. In all the live mosquitoes examined until Day 5 after inoculation, the rate of fungal invasion of the head (the part outside the brain) was significantly higher than that of the abdomen (n = 30, p < 0.05), but the rate did not differ significantly between the head and thorax during the experimental period (n = 30, p > 0.05).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.