Abstract

AbstractModels testing interactive and quadratic hypotheses are common in Political Science but control strategies for these models have received little attention. Common practice is to simply include additive control variables, without relevant product terms, into models with interaction or quadratic terms. In this paper, we show in Monte Carlos that interaction terms can absorb the effects of other un-modeled interaction and non-linear effects and analogously, that included quadratic terms can reflect omitted interactions and non-linearities. This problem even occurs when included and omitted product terms do not share any constitutive terms. We show with Monte Carlo experiments that regularized estimators, the adaptive Lasso, Kernel Regularized Least Squares (KRLS), and Bayesian Additive Regression Trees (BART) can prevent the misattribution of interactive/quadratic effects, minimize the problems of efficiency loss and overfitting, and have low false-positive rates. We illustrate how inferences drawn can change when relevant product terms are used in the control strategy using a recent paper. Implementing the recommendations of this paper would increase the reliability of conditional and non-linear relationships estimated in many papers in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.