Abstract

ContextLand-use change is one of the main threats to biodiversity on the global scale. Legacy effects of historical land-use changes may affect population dynamics of long-lived species, but they are difficult to evaluate through observational studies alone. We present here an interdisciplinary modelling approach as an alternative to address this problem in landscape ecology.ObjectivesAssess effects of agricultural abandonment and anthropisation on the population dynamics of long-lived species. Specifically, we evaluated: (a) how changes in movement patterns caused by land-use change might impact population dynamics; (b) time-lag responses of demographic variables in relation to land-use changes.MethodsWe applied an individual-based and spatial-explicit simulation model of the spur-tighed tortoise (Testudo graeca), an endangered species, to sequences of real-world landscape changes representing agricultural abandonment and anthropisation at the local scale. We analysed different demographic variables and compared an “impact scenario” (i.e., historical land-use changes) with a “control scenario” (no land-use changes).ResultsWhile agricultural abandonment did not lead to relevant changes in demographic variables, anthropisation negatively affected the reproductive rate, population density and the extinction probability with time-lag responses of 20, 30 and 130 years, respectively, and caused an extinction debt of 22%.ConclusionsWe provide an understanding of how changes in animal movement driven by land-use changes can translate into lagged impacts on demography and, ultimately, on population viability. Implementation of proactive mitigation management are needed to promote landscape connectivity, especially for long-lived species for which first signatures of an extinction debt may arise only after decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call