Abstract

Problems of motion of a triaxial ellipsoid in an ideal liquid and in a viscous liquid in the Stokes approximation and also equilibrium shapes of the rotating gravitating liquid mass are considered. Solutions of these problems expressed via four quadratures depending on four parameters are significantly simplified because they are expressed via the only function of two arguments. The efficiency of the proposed approach is demonstrated by means of analyzing the velocity and pressure fields in an ideal liquid, calculating the added mass of the ellipsoid, determining the viscous friction, and studying the equilibrium shapes and stability of the rotating gravitating capillary liquid. The pressure on the triaxial ellipsoid surface is expressed via the projection of the normal to the impinging flow velocity. The shape of an ellipsoid that ensures the minimum viscous drag at a constant volume is determined analytically. A simple equation in elementary functions is derived for determining the boundary of the domains of the secular stability of the Maclaurin ellipsoids. An approximate solution of the problem of equilibrium and stability of a rotating droplet is presented in elementary functions. A bifurcation point with non-axisymmetric equilibrium shapes branching from this point is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.