Abstract
The Ritz variational method is applied to problems of a crack (a cut) in the middle half-plane of a three-dimensional elastic wedge. The faces of the elastic wedge are either stress-free (Problem A) or are under conditions of sliding or rigid clamping (Problems B and C respectively). The crack is open and is under a specified normal load. Each of the problems reduces to an operator integrodifferential equation in relation to the jump in normal displacement in the crack area. The method selected makes it possible to calculate the stress intensity factor at a relatively small distance from the edge of the wedge to the cut area. Numerical and asymptotic solutions [Pozharskii DA. An elliptical crack in an elastic three-dimensional wedge. Izv. Ross Akad. Nauk. MTT 1993;(6):105–12] for an elliptical crack are compared. In the second part of the paper the case of a cut reaching the edge of the wedge at one point is considered. This models a V-shaped crack whose apex has reached the edge of the wedge, giving a new singular point in the solution of boundary-value problems for equations of elastic equilibrium. The asymptotic form of the normal displacements and stress in the vicinity of the crack tip is investigated. Here, the method employed in [Babeshko VA, Glushkov YeV, Zinchenko ZhF. The dynamics of Inhomogeneous Linearly Elastic Media. Moscow: Nauka; 1989] and [Glushkov YeV, Glushkova NV. Singularities of the elastic stress field in the vicinity of the tip of a V-shaped three-dimensional crack. Izv. Ross Akad. Nauk. MTT 1992;(4):82–6] to find the operator spectrum is refined. The new basis function system selected enables the elements of an infinite-dimensional matrix to be expressed as converging series. The asymptotic form of the normal stress outside a V-shaped cut, which is identical with the asymptotic form of the contact pressure in the contact problem for an elastic wedge of half the aperture angle, is determined, when the contact area supplements the cut area up to the face of the wedge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.