Abstract
Soit ϕ(x 1 ,...,x h ,y) = u 1 x 1 + ... + u h x h + vy une forme lineaire a coefficients entiers non nuls u 1 ,..., u h , v. Soient A = (A 1 ,..., Ah) un h-uplet d'ensembles finis d'entiers et B un ensemble infini d'entiers. Definissons la fonction de representation associee a la forme ϕ et aux ensembles A et B comme suit: Si cette fonction de representation est constante, alors l'ensemble B est periodique, et la periode de B est bornee en termes du diametre de l'ensemble fini {ϕ(a 1 ,..., a h , 0): (a 1 ,..., a h ) ∈ A 1 x ... × A h }. D'autres resultats sur les ensembles se completant pour une forme lineaire sont egalement prouves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.