Abstract
Ni-rich layered oxides, LiNixCoyMnzO2 (NCM) and LiNixCoyAlzO2 (NCA) with x + y + z = 1 and x ≥ 0.8, are regarded to be the best choice for the cathode material of high energy Li-ion batteries due to their combined advantages in capacity, working potential and manufacture cost. However, their application in practical Li-ion batteries is hindered by two essential problems of (1) performance degradation and (2) safety hazard over the whole life of battery. Performance degradation behaves as declines in battery's capacity and working voltage as well as the battery's swelling and impedance growth; Safety hazard arises from thermal runaway under abuse conditions such as overcharging, overheating, and electric shorting. It appears that nearly all problems can be ultimately attributed to the loss of oxygen, especially caused by the oxidation of lattice oxygen in H3 phase where the capacities are contributed by both of the Ni and O redox couples. In this review, the problems and their origins of Ni-rich layered oxides are overviewed, and the solutions attempted to mitigate these problems are outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.