Abstract

The common endogenous security problems in cyberspace and related attack threats have posed subversive challenges to conventional theories and methods of functional safety. In the current design of the cyber physical system (CPS), functional safety and cyber security are increasingly intertwined and inseparable, which evolve into the generalized functional safety (S&S) problem. The conventional reliability and cybersecurity technologies are unable to provide security assurance with quantifiable design and verification metrics in response to the cyberattacks in hardware and software with common endogenous security problems, and the functional safety of CPS facilities or device has become a frightening ghost. The dynamic heterogeneity redundancy (DHR) architecture and coding channel theory (CCT) proposed by the cyberspace endogenous security paradigm could handle random failures and uncertain network attacks in an integrated manner, and its generalized robust control mechanism can solve the universal problem of quantitative design for functional safety under probability or improbability perturbation. As a generalized functional safety enabling structure, DHR opens up a new direction to solve the common endogenous security problems in the cross-disciplinary fields of cyberspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.