Abstract

Winery wastewater treatment plants generally face severe nutrient deficiency, and therefore conventional technologies and supplementary nutrient dosing strategies may fail. The purpose of the paper is to show how traditional way of dosing N-source for marginal availability to nutrient deficient influents results in poorly settling activated sludge regardless of the application of aerated or non-aerated selectors. External N-source calculated for marginal availability resulted in nutrient deficiency due to the relatively high yield experienced (0.7 g biomass COD/g substrate COD). In the fully aerated system with overall N-deficiency, rapidly increasing overproduction of extracellular polysaccharide was experienced, leading to SVI (Sludge Volume Index) values up to 600 cm3 g−1. In the system with the non-aerated selector, initial nutrient deficiency could only be detected in the second reactor. Since neither overgrowth of floc-forming GAOs (Glycogen Accumulating Organisms) nor denitrification could be experienced, the non-aerated reactor operated as low-DO (Dissolved Oxygen) basin, attributing to the drastic overgrowth of filamentous bacteria leading to SVI values >1000 cm3 g−1. Since dosing external N-source for marginal availability is likely to cause severe biomass separability problems in activated sludge winery wastewater treatment, either pronounced N-overdosing and pre-denitrification or severe nutrient deficiency and GAO cultivation can rather be recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call