Abstract

Small (0.3–1.8mm long), locally abundant, urn-shaped fossils within surface horizons of a paleosol in the 2.2Ga Hekpoort Formation near Waterval Onder, South Africa, are here described and named Diskagma buttonii Retallack gen. et sp. nov. The fossils are from fresh rock of a deep highway cutting, and have been metamorphosed to upper greenschist facies like their matrix. Despite metamorphic alteration, total organic carbon of the samples was 0.04% and its isotopic composition (δ13C) was −25.6±0.08‰ (two standard deviations) versus Vienna Pee Dee belemnite standard. Organic outlines of the fossils are also accentuated by recystallized berthierine and opaque oxides. The fossils are locally clumped within surface swales of a Vertisol paleosol, identified from characteristic penecontemporaneous deformation (clastic dikes between swales of mukkara structure) and from pronounced geochemical differentiation (phosphorus and copper strain-corrected mass-depletion characteristic of an oxidized biologically active soil). This paleosol's chemical composition is evidence of temperate humid climate (mean annual temperature 11.3±4.4°C, and mean annual precipitation 1489±182mm). Associated paleosols indicate atmospheric CO2 of 6640 (+12,880/−4293)ppm (0.6%) and 0.9–5% atmospheric O2. The best preserved examples of Diskagma are shaped like an urn with a flared rim, and closed below the flare. Observation of hundreds of specimens in thin section reveals substantial variation in growth (elongation) and decay (shredding and deflation). They had a hollow ellipsoidal interior that is unusually devoid of opaque debris, unlike the matrix. Diskagma is superficially comparable with lichens such as Cladonia (Ascomycota) and Geosiphon (Glomeromycota). Definitive reproductive structures remain unknown. They predate the oldest other likely fossil eukaryotes (1.9Ga) and fungi (1.5Ga), and current molecular clock estimates for eukaryotes (1.6Ga) and fungi (1.1Ga). Lichenized actinobacteria are plausible prokaryotic alternatives permitted by molecular clocks. Although biological affinities of Diskagma are uncertain, these fossils reveal the general appearance of Paleoproterozoic life on land.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.