Abstract

The equilibrium geometry, harmonic vibrational frequencies, and infrared transition intensities of p-benzyne were calculated at the MBPT(2), SDQ-MBPT(4), CCSD, and CCSD(T) levels of theory using different reference wave functions obtained from restricted and unrestricted Hartree-Fock (RHF and UHF), restricted Brueckner (RB) orbital, and Generalized Valence Bond (GVB) theory. RHF erroneously describes p-benzyne as a closed-shell singlet rather than a singlet biradical, which leads to orbital near-instabilities in connection with the mixing of orbital pairs b1u-ag (HOMO–LUMO), b2g-ag (HOMO-1-LUMO), and b1g-ag (HOMO-2-LUMO). Vibrational modes of the corresponding symmetries cause method-dependent anomalous increases (unreasonable force constants and infrared intensities) or decreases in the energy (breaking of the D2h symmetry of the molecular framework of p-benzyne). This basic failure of the RHF starting function is reduced by adding dynamic electron correlation. However RHF-MBPT(2), RHF-SDQ-MBPT(4), RHF-CCSD, RB-CCD, and RHF-CCSD(T) descriptions of p-benzyne are still unreliable as best documented by the properties of the b1u-, b2g-, and b1g-symmetrical vibrational modes. The first reliable spin-restricted description is provided when using Brueckner orbitals at the RB-CCD(T) level. GVB leads to exaggerated biradical character that is reduced at the GVB-MP2 level of theory. The best results are obtained with a UHF reference wave function, provided a sufficient account of dynamic electron correlation is included. At the UHF-CCSD level, the triplet contaminant is completely annihilated. UHF-CCSD(T) gives a reliable account of the infrared spectrum apart from a CCH bending vibrational mode, which is still in disagreement with experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call