Abstract

With the progress of technology, the multi-agent system is successfully applied in many applications. In this paper, we investigate the problem of multi-agent system reconnaissance mission scheduling, which is the core of the reconnaissance decision support system and can be modeled as an extension of Multi-Mode Multi-Skill Resource-Constrained Project Scheduling Problem. Three objectives are considered in this paper: (1) minimizing the reconnaissance mission’s makespan, (2) minimizing the total cost of allocating reconnaissance agents, and (3) maximizing the total quality of all reconnaissance tasks. An effective problem-specific multi-objective invasive weed optimization algorithm (PS-MOIWO) is proposed for solving the problem. Firstly, a new chromosome structure guaranteeing the feasibility of solutions and an initialization method are proposed. Secondly, we propose a self-adaptive penalty-based constraint handling technique to describe the fitness of each individual and adopt a novel non-dominated sorting method to rank the population. Thirdly, by using the problem-specific knowledge, a local search procedure is developed and incorporated into the PS-MOIWO framework to enhance the exploitation ability. Based on the Taguchi method, algorithm’s suitable parameter combinations are determined. Simulation results based on a set of newly generated reconnaissance instances and the comparisons with some existing algorithms demonstrate the proposed algorithm’s effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call