Abstract

Perfluorobutanesulfonate (PFBS) is an emerging pollutant in aquatic environments and potently disrupts the early developmental trajectory of teleosts. Considering the persistent and toxic nature of PFBS, it is necessary to develop in situ protective measures to ameliorate the toxic damage of PFBS. Probiotic supplements are able to mitigate the growth retardation defects of PFBS. However, the interactive mechanisms remain elusive. To this end, this study acutely exposed zebrafish larvae to a concentration gradient of PFBS (0, 1, 3.3 and 10 mg/L) for 4 days, during which probiotic bacteria Lactobacillus rhamnosus were added in the rearing water. After exposure, alterations in gene transcriptions and key hormones along the hypothalamus–pituitary–interrenal (HPI), growth hormone/insulin–like growth factor (GH/IGF) and hypothalamus–pituitary–thyroid (HPT) axes were examined. The results showed that PFBS single exposure significantly increased the cortisol concentrations, suggesting the induction of stress response, while probiotic supplementation effectively decreased the cortisol levels in coexposed larvae in an attempt to relieve the stress of PFBS toxicant. It was unexpected that probiotic additive significantly decreased the larval GH concentrations independent of PFBS, thereby eliminating the contribution of GH/IGF axis to the growth improvement of probiotics. In contrast, probiotic bacteria remarkably increased the concentration of thyroid hormones, particularly the thyroxine (T4), in zebrafish larvae. The pronounced down-regulation of uridinediphosphate glucoronosyltransferases (UDPGT) gene pointed to the blocked elimination process of T4 by probiotics. Furthermore, proteomic fingerprinting found that probiotics were potent to shape the protein expression pattern in PFBS-exposed zebrafish larvae and modulated multiple biological processes that are essential for the growth. In summary, the present findings suggest that HPI and HPT axes may cooperate to enhance the growth of fish larvae under PFBS and probiotic coexposures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.