Abstract
Along with the intensification of culture systems to meet the increasing global demands, there was an elevated risk for diseases outbreak and substantial loss for farmers. In view of several drawbacks caused by prophylactic administration of antibiotics, strict regulations have been established to ban or minimize their application in aquaculture. As an alternative to antibiotics, dietary administration of feed additives has received increasing attention during the past three decades. Probiotics, prebiotics, synbiotics and medicinal plants were among the most promising feed supplements for control or treatments of bacterial, viral and parasitic diseases of fish and shellfish. The present review summarizes and discusses the topic of potential application of probiotics as a means of disease control with comprehensive look at the available literature. The possible mode of action of probiotics (Strengthening immune response, competition for binding sites, production of antibacterial substances, and competition for nutrients) in providing protection against diseases is described. Besides, we have classified different pathogens and separately described the effects of probiotics as protective strategy. Furthermore, we have addressed the gaps of existing knowledge as well as the topics that merit further investigations. Overall, the present review paper revealed potential of different probiont to be used as protective agent against various pathogens.
Highlights
Specialty section: This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology
Considering the difference between environment in aquatic ecosystem and those terrestrial animals, a modified definition proposed for probiotics in aquaculture by Merrifield et al (2010b) as, “a probiotic organism can be regarded as a live, dead or component of a microbial cell, which is administered via the feed or to the rearing water, benefiting the host by improving disease resistance, health status, growth performance, feed utilization, stress response or general vigor, which is achieved at least in part via improving the hosts microbial balance or the microbial balance of the ambient environment.”
Safari et al (2016) evaluated the benefits of dietary administration of host-derived candidate probiotics E. casseliflavus in juvenile rainbow trout, and results showed that E. casseliflavus could improve growth performance and enhance disease resistance when challenged with S. iniae
Summary
Several types of beneficial feed additive such as probiotics, prebiotics, and synbiotics are being used in aquaculture to improve growth performance, immune responses and disease resistance as well as an alternative to antibiotics (Irianto and Austin, 2002; Hoseinifar et al, 2016, 2017b; Sayes et al, 2018). Considering the difference between environment in aquatic ecosystem and those terrestrial animals, a modified definition proposed for probiotics in aquaculture by Merrifield et al (2010b) as, “a probiotic organism can be regarded as a live, dead or component of a microbial cell, which is administered via the feed or to the rearing water, benefiting the host by improving disease resistance, health status, growth performance, feed utilization, stress response or general vigor, which is achieved at least in part via improving the hosts microbial balance or the microbial balance of the ambient environment.”. Considering the difference between environment in aquatic ecosystem and those terrestrial animals, a modified definition proposed for probiotics in aquaculture by Merrifield et al (2010b) as, “a probiotic organism can be regarded as a live, dead or component of a microbial cell, which is administered via the feed or to the rearing water, benefiting the host by improving disease resistance, health status, growth performance, feed utilization, stress response or general vigor, which is achieved at least in part via improving the hosts microbial balance or the microbial balance of the ambient environment.” The probiotics include different kinds of bacteria, bacteriophages, microalgae and yeast which have been widely used in aquaculture via water routine or feed supplement (Llewellyn et al, 2014) Currently, there are lots of commercially available probiotics in for of mono or multi-strains (Van Doan et al, 2017)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.