Abstract

Acute necrotizing pancreatitis is a severe acute inflammatory disease of the pancreas that can lead to extrapancreatic organ involvement. Supervening lung injury is an important clinical entity determining the prognosis of the patient. Probiotics are dietary supplements known to reduce or alter inflammation and inflammatory cytokines. In the present study, we hypothesize that probiotics may reduce lung injury by reducing bacterial translocation, which results in reduced infection, inflammation, and generation of proinflammatory cytokines in an experimental model of acute necrotizing pancreatitis. Pancreatitis was induced by concomitant intravenous infusion of cerulein and glycodeoxycholic acid infusion into the biliopancreatic duct. Saccharomyces boulardii was used as the probiotic agent. Rats were divided into three groups: sham, pancreatitis-saline, which received saline via gavage at 6 and 24 h following the pancreatitis, pancreatitis-probiotics, which received probiotics via gavage method at 6 and 24 h following the pancreatitis. The rats were sacrificed at 48 h, venous blood, mesenteric lymph node, pancreatic and lung tissue samples were obtained for analysis. Serum pancreatic amylase, lactate dehydrogenase, secretory phospholipase A(2), and IL-6 were found to be increased in pancreatitis-saline group compared with the other groups (P < 0.05). Histological analyses revealed that edema, inflammation, and vacuolization as well as polymorphonuclear leukocyte infiltration in the lung tissue was significantly reduced in the probiotic treated group. Bacterial translocation was significantly reduced in the probiotic treated group compared with the other groups (P < 0.05). These results suggest that Saccharomyces boulardii reduce the bacterial translocation. As a result of this, reduced proinflammatory cytokines and systemic inflammatory response was observed, which may be the reason underlying reduced lung injury in acute necrotizing pancreatitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.