Abstract

Steady-state photoluminescence (PL) quenching of colloidal CdSe/ZnS and CdSe quantum dots (QDs) induced by functionalized porphyrin molecules was investigated for various QD sizes. The majority of the observed strong quenching of the QD photoluminescence can be assigned to neither Förster resonant energy transfer (FRET) nor photoinduced charge transfer between the QDs and the chromophore. Using the remaining small FRET efficiency to monitor the formation of QD/chromophore nanoassemblies, the major contribution to PL quenching was found to be proportional to the calculated quantum-confined exciton wave function at the QD surface. The quenching depends on the QD size and shell and is stronger for smaller quantum dots. Upon comparison of experimentally determined quenching rates and calculations of the exciton wave function, it was concluded that the attachment of only one chromophore induces a pertubation of the wave function that is accompanied by a strong increase of the radiationless decay rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.