Abstract
Excited-state trajectories computed at the complete active space second-order perturbation theory (CASPT2) reveal how vibrational excitation controls the molecular approach to the intersection space that drives the photodissociation of a prototypical halogenated methyl radical, namely CF2I. Translating the Franck-Condon structure along the ground-state CASPT2 vibrational modes in this system followed by propagating the displaced structures in the first excited doublet state simulates specific vibrational excitations and vibrationally mediated dynamics, respectively. Three distinct situations are encountered: the trajectories (i) converge to an energetically flat segment of the intersection space, (ii) locate a segment of the intersection space, and (iii) access a region where the intersection space degeneracy is lifted to form a ridge of avoided crossings. The computational protocol documented herein can be used as a tool to design control strategies based on selective excitation of vibrational modes, including adaptive feedback schemes using coherent light sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.