Abstract
Bioinspired metal-based nanoparticles have potential uses in many applications, but before possible commercial exploitation, it is essential to clarify the pathways of their production and deposition inside the organisms, for example, in bacteria. The technique of magnetic force microscopy (MFM) could be used to evaluate the nanoparticles' magnetic properties, in addition to allowing tracing their location inside or outside of bacteria, which could help to understand pathways of their biosynthesis. In this work, using MFM and analyzing the interaction of magnetic tip with nanoparticles and bacteria imbedded in resin at different heights above the surface, and comparing gradients of forces recorded by magnetic and non-magnetic tips, a condition was found, which allows measuring the pure magnetic response of Pd-Fe nanoparticles. For these nanoparticles, the interplay between magnetic and van der Waals forces is described at small distances to the surface. Experimental data are compared with simulations, based on the calculation of the distribution of the magnetic field around a nanoparticle, which defines magnetic force acting on the MFM tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.