Abstract

We demonstrate how potential impurities are a very powerful tool for determining the pairing symmetry in graphene proximity-coupled to a spin-singlet superconductor. All d-wave states are characterized by subgap resonances, with spatial patterns clearly distinguishing between nodal and chiral d-wave symmetry, while s-wave states have no subgap resonances. We also find strong supergap impurity resonances associated with the normal state Dirac point. Sub- and supergap resonances only interact at very low doping levels, then causing suppression of the supergap resonances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.