Abstract

Ultralight bosons are attractive dark-matter candidates and appear in various scenarios beyond standard model. They can induce superradiant instabilities around spinning black holes (BHs), extracting the energy and angular momentum from BHs, and then dissipate through monochromatic gravitational radiation, which become promising sources of gravitational wave detectors. In this letter, we focus on massive tensor fields coupled to BHs and compute the stochastic gravitational wave backgrounds emitted by these sources. We then undertake a search for this background within the data from LIGO/Virgo O1∼O3 runs. Our analysis reveals no discernible evidence of such signals, allowing us to impose stringent limits on the mass range of tensor bosons. Specifically, we exclude the existence of tensor bosons with masses ranging from 4.0 × 10-14 to 2.0 × 10-12 eV at 95% confidence level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.